LArFlow: From 2D images to 3D space-points

Taritree Wongjirad (Tufts) Exa.TrkX Workshop June 4th, 2019

Introduction

- Developing convolutional neural network (CNN) to generate 3D point cloud from 2D LArTPC images
- This work follows the computer vision efforts in dense correspondence
- Discuss
 - Network architecture
 - Data preparation
 - Post-processing
 - Preliminary performance metrics
- Next steps

Dense pixel correspondence

Goal of dense pixel correspondence in the computer vision world -- match regions of one image to another, connecting semantically similar regions

Choy et al. "Universal Correspondence Network" NIPS 2016

Zhou, Krähenbühl et al. "Learning Dense Correspondence via 3D-quided Cycle Consistency" CPVR 2016

Dense Pixel Correspondence: Example output

in LArTPC context

matchability = 0 when true target pixel in dead wires, below thresh, etc.

enforce same-time tick, so only wire-direction flow predicted

^{*}We use 512 time bin x 512 wires cropped images for training due to technical restraints

LArTPC pixel correspondence: LArFlow

Network predicts correspondence between pixels (charges) in Y, U, V ADC images

Correspondence prediction gives 3D space-point for that charge

LArFlow network architecture

LArFlow network architecture

Loss

- Smooth L1 loss used (regression loss)
 - Error between true flow and predicted flow
 - Not capping pixels with large differences (sometimes done in the literature to prevent influence of outlier)
- Only calculate loss on pixels where at least one end of flow has charge
 - Allowing predictions from dead regions in starting image to charge on target region and vice-versa
 - These harder pixels allowed as first results showing network was getting these cases fairly well even though such cases were not included in calculated loss

Data preparation

- Images preparation:
 - Noise filtering
 - pulse finding + zero suppression
 - Deconvolve wire response
 - Accounting for electronics response + expected induced signal
 - Downsample in time (summed) by factor of 6
- 3D consistent cropping
 - Full size: 3456 (wire) x 6448 (ticks)
 - Downsampled size: 3456 x 1008 -- both dimensions about 3 mm
 - Cropped into 832 wire x 512 ticks (24 images per plane)

Data preparation

- Images preparation:
 - Noise filtering
 - pulse finding + zero suppression
 - Deconvolve wire response
 - Accounting for electronics response + expected induced signal
 - Downsample in time (summed) by factor of 6
- 3D consistent cropping
 - Full size: 3456 (wire) x 6448 (ticks)
 - o Downsampled size: 3456 x 1008 -- both dimensions about 3 mm
 - Cropped into 832 wire x 512 ticks (24 images per plane)
- 220k training images, 40k validation images
 - Simulated images -- truth used to produce labels

Training

- First passes
- Training network to project charge on Y wire to charge on U wire
- Accuray Curves measure fraction where |Predicted -true| projected U plane pixel is
 - <10 pixels</p>
 - < 5 pixels</p>
 - < 2 pixels</p>
- For validation sample
 - o <10: 78%
 - o <5: 60%
 - <2: 32%</p>

Visualization

 Visualize how the network is doing by projecting source image into target image (masking out matchibily=0 pixels)

Visualization

What the U-plane ADC is

Taking y-plane charge, and moving it to predicted u-plane location

What the U-plane ADC is

Taking y-plane charge, and moving it to predicted u-plane location

Visualization

More errors (investigating why)

What the U-plane ADC is

Taking y-plane charge, and moving it to predicted u-plane location

What the U-plane ADC is

Taking y-plane charge, and moving it to predicted u-plane location

3D View

3D View

Performance Metric (for MC)

Absolute distance in y (cm) between reco and truth

Within 10cm for 92% of hits Within 50cm for 95% of hits If flow prediction (U or V wire) is wrong, we shift to incorrect y

Performance Metric (for MC)

Absolute distance in y (cm) between reco and truth

Have plans to use cosmic muon data to evaluate similar metrics

Within 10cm for 92% of hits
Within 50cm for 95% of hits
If flow prediction (U or V wire) is wrong, we shift to incorrect y

Post-processing

- 1. For every charge above ADC threshold in Y network predicts pair U (V) wire
- 2.2D contours formed on source (Y) and target (U,V) images
- 3. Points in source clusters matched to target clusters, match quality criteria applied

W/ track/shower topology labeling

w/ DL-based clustering (Mask-RCNN)

First use: false-vertex rejection

First use: false-vertex rejection

Deployment

- With sparse-operations plan is to deploy on single CPU nodes (on FermiGrid)
- First tests on laptop
 - Dual flow prediction: 0.1 seconds (ave use of about 1.2 cores, 1.1 GB)
- With need to split image and merge output of net, <u>non-network processing</u> is now the bottleneck (not considering IO)

Next Steps/Open Questions

- Network optimization
 - Depth and width not explored -- memory limited when using dense conv. operations. With sparse operations can explore more with available hardware
- Visibility prediction
 - Currently off (again due to memory constraints). Now can train.
- Loss improvements
 - O 3D consistency: Have redundant predictions. Flow from one plane to the two planes should produce the same 3D position. Can penalize based on difference in distance. Will it help?
 - Instead of regression, use classifier type losses with each output class being some flow seen examples where these are better at learning multi-modal distributions
- Up-weight, up-sample "difficult" examples -- where must decide between two
 possible regions, areas of large intersection, images with many EM showers

Summary

- Using CNNs to provide low-level 3D hits as a foundation for point-cloud-based reconstruction techniques ("traditional" and ML-based)
- Good enough accuracies for early uses in cosmic rejection
- Use of sparse submanifold convolutions key in being able to train with large batch sizes and deploy in reasonable time -- opens up exploration of bigger network

Showing work of group members:

Ralitsa Sharanova (post-doc)

Katie Mason (grad)

Joshua Mills (grad)